Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions
نویسندگان
چکیده
Higher order elliptic partial differential equations with Dirichlet boundary conditions in general do not satisfy a maximum principle. Polyharmonic operators on balls are an exception. Here it is shown that in R small perturbations of polyharmonic operators and of the domain preserve the maximum principle. Hence the Green function for the clamped plate equation on an ellipse with small eccentricity is positive.
منابع مشابه
Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions
when ε ≥ 0 is small. In particular, ∆2v + εv ≥ 0 in Ω, with v = ∆v = 0 on ∂Ω, implies v ≥ 0 for ε small. In numerical experiments ([14]) for one dimension a similar behaviour was observed under Dirichlet boundary conditions v = ∂ ∂nv = 0. In this paper we will derive a 3-G type theorem as in (1) but with G1,n replaced by the Green function Gm,n for the m-polyharmonic operator with Dirichlet bou...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملGibbs phenomenon and its removal for a class of orthogonal expansions
We detail the Gibbs phenomenon and its resolution for the family of orthogonal expansions consisting of eigenfunctions of univariate polyharmonic operators equipped with homogeneous Dirichlet boundary conditions. As we establish, it is possible to completely describe this phenomenon, including determining exact values for the size of the overshoot near both the domain boundary and the interior ...
متن کاملA Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems
In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...
متن کاملUniversal Bounds for Eigenvalues of the Polyharmonic Operators
We study eigenvalues of polyharmonic operators on compact Riemannian manifolds with boundary (possibly empty). In particular, we prove a universal inequality for the eigenvalues of the polyharmonic operators on compact domains in a Euclidean space. This inequality controls the kth eigenvalue by the lower eigenvalues, independently of the particular geometry of the domain. Our inequality is shar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995